New complexity analysis for primal-dual interior-point methods for self-scaled optimization problems

نویسندگان

  • Bo Kyung Choi
  • Gue Myung Lee
چکیده

*Correspondence: [email protected] Department of Applied Mathematics, Pukyong National University, Busan, 608-737, Korea Abstract A linear optimization problem over a symmetric cone, defined in a Euclidean Jordan algebra and called a self-scaled optimization problem (SOP), is considered. We formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOP by using a proximity function defined by a new kernel function, and we obtain the best known complexity results of the large-update IPM for the SOP by using the Euclidean Jordan algebra techniques. MSC: 90C51; 90C25; 65K05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Interior-point Algorithms for Convex Optimization Based on Primal-dual Metrics

We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms whose iteration complexity we analyse are so-called short-step algorithms. Our iteration complexity bounds match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013